Researchers Develop Soft Medical Sensors by Bonding Rubber and Electrical Components

The increased use of digital technologies for improved health care...

Image credit: Imperial College London

The increased use of digital technologies for improved health care is driving the need for soft sensors. Scientists have long been trying to develop such sensors, but none have made it to market because they cannot easily be integrated with electronic components, like the wires, computer chips and batteries needed to gather, process and send the data the sensor collects.

Read more Scientists Develop Stretchable Wireless Sensor to Monitor Healing of Cerebral Aneurysms

Now, researchers at Imperial College London have developed a way to create a tight bond between rubber and electrical components. They have developed a bond so strong that the stretchy rubber itself breaks before the bond between the two different materials does, reports Hayley Dunning at Imperial College London. The researchers say these soft sensors could be used for wireless, low-cost rehabilitation or health monitoring.

“We hope this method will allow us to make low-cost soft sensors that are reliable and portable, that can be used to monitor people’s health in their own homes,” said first author Michael Kasimatis, from the Department of Bioengineering at Imperial.

“Such sensors could be coupled with a mobile device, such as a smartphone, so that the data they generate can be easily processed and stored on the cloud, which is important for applications in digital healthcare.”

The bond is so strong the rubber breaks before the bond does (Image credit: Imperial College London)

Previously, researchers attempted to bind rubber and plastic using adhesives or clamps, but either came apart under force, or damaged the soft material. The new method instead uses small pieces of metal-coated silicon, which create a chemical bond with the stretchy and squeezy rubber.

The researchers demonstrated how their bonding method can resist the strains of stretching and also tested it out in a few prototype sensors. For example, they used a squeezable ball to monitor progress in hand rehabilitation, and a stretchy band that goes around the chest and monitors breathing.

Read more Stanford Scientists Develop Fully Flexible Wireless Sensors for Tracking Health

“Having successfully demonstrated how this new bonding approach could work and be applied in laboratory prototypes, we now want to take this technology out of the lab and make it available to everyone,” said Dr. Firat Güder, another researcher involved in the study.

Sam Draper
December 12, 2019

Innovation of the Month

Do you want to discover more, visit the website
Visit Website

Other news

Rising Popularity of Wearables and IoT Fueling Growth Of UV Sensor Market

The market for ultraviolet (UV) sensors is expected to grow by USD 2.69 billion during 2020-2024...

Researchers Develop Recyclable Electronic Skin with True Flexibility

Researchers at the University of Colorado Boulder have developed a circuit board that provides...

Garmin Lily, A Smartwatch Targeted at Women, Expected to Hit Markets Soon

Garmin has designed a smartwatch specifically for women and it is just around the corner...

This App Combines AI and Biosensors to Detect COVID-19 in Two Minutes, Even in Asymptomatic Patients

NeuTigers, an Artificial Intelligence company spun out of Princeton University, launched Covid...
Discover more