New Algorithm Could Help to Reduce Falls

This algorithm measures gait quality through smartwatches and could prevent falling.

Image credit: micheile dot com, Unsplash

Falls are one of the most significant health and economic issues in Australia and worldwide. In Australia, the treatment of injuries from falls in older people cost the economy $2.3 billion in 2020.

Now, a new algorithm written by researchers from Neuroscience Research Australia (NeuRA) and UNSW Sydney could help promote health in older people and at-risk population reports UNSW. The Watch Walk algorithm measures walking steadiness and speed. By pairing it with a wearable tech device such as a smartwatch, the algorithm can provide real-time feedback on how to improve individual walking stability to reduce falls.

Digital gait biomarkers are quantitative measures of aspects of an individual’s gait, such as posture, cadence, walking speed, and length of stride, that offer insights into the overall health and functional decline and can often predict their likelihood to fall.

Read more: Australian Government Allots US$7 Million to Enhance Healthcare Using Wearables

UNSW Medicine & Health and NeuRA research and co-lead author of the study, Lloyd Chan said it was the first time an algorithm for measuring gait had been widely tested in real-world environments. “We know that the way people walk is a predictor of their health. For example, people who walk more slowly, infrequently, in smaller steps, or for shorter distances are typically more likely to suffer a fall."

“Our goal was to capture this data through looking at how individuals naturally walk in their daily lives and then test this broadly on over 70,000 individuals.”

The new algorithm was created using movement data generated from wrist sensors worn by 101 study participants aged between 19 and 81. The algorithm's validity was later tested in another study involving around 79,000 participants from the UK Biobank database. Participants aged 46 to 77 were instructed to wear wrist devices for a week to record their movements, which were classified into walking, running, stationary, or unspecified arm activity. This study then found the Watch Walk algorithm to precisely measure those movements.

According to the researchers, their two-stage study was the first to widely test an algorithm for measuring gait in real-world environments.

Jürgen Thalmayer
October 19, 2022

Innovation of the Month

Do you want to discover more, visit the website
Visit Website

Other news

Global Launch of Ks2 Smartwatch from Kieslect

Kieslect celebrated the global launch of the Kieslect Ks2, with dual Core, Triple Speed technology.

December 2023 : Flow Neuroscience

Flow: Home-based depression relief—fast, safe, innovative.

Neurotech Startup Humm Launches Public Beta Of Its Wearable To Improve Learning Ability

humm, a neurotech company focused on helping people learn, launched a public beta for the ...

A New Partnership for Portable CO2 Detector

Sensirion has partnered up ZenMeasure to develop a portable mobile CO2 detector.
Discover more