Biosensors to Measure Antibiotic Levels From Breath Samples

A team of engineers and biotechnologists at the University of Freiburg has for the first time ...

Dr. Can Dincer (Photo credit: University of Freiburg)

A team of engineers and biotechnologists at the University of Freiburg has for the first time shown that it is possible to determine the concentration of antibiotics in the body of mammals using breath samples. The breath measurements also corresponded to the antibiotic concentrations in the blood.

Read more: New Hydrogel Material For Wound Treatment Can Kill Antibiotic Resistant Bacteria

The team’s biosensor – a multiplex chip that allows simultaneous measurement of several specimens and test substances – will in the future enable personalized dosing of medicines against infectious diseases on-site and help to minimize the development of resistant strains of bacteria.

The sensor was created by scientists led by Dr. Can Dincer and H. Ceren Ates, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, and Professor Dr. Wilfried Weber, Professor of Synthetic Biology and a member of the team of speakers at the Cluster of Excellence CIBSS — Centre for Integrative Biological Signalling Studies, reports the University of Freiburg. The sensor is based on synthetic proteins that react to antibiotics, resulting in a current change. The observations have been published in the Advanced Materials journal.

Previously researchers could only detect traces of antibiotics in the breath

The researchers tested the biosensor on the blood, plasma, urine, saliva and breath samples of pigs who had received antibiotics. They were able to show that the result achieved with biosensors in the pigs’ plasma were as accurate as the standard medical laboratory process. Previously, measurement of antibiotic levels in exhaled breath samples was not possible: “Until now researchers could only detect traces of antibiotics in the breath. With our synthetic proteins on a microfluidic chip, we can determine the smallest concentrations in the breath condensate and they correlate with the blood values,” explains Dincer.

Sensor will help to keep antibiotic level stable in severely ill

Physicians need to keep the antibiotics level within a personalized therapeutic range for patients suffering severe infections, at the risk of threats such as sepsis and organ failure or even the death of the patient. Inadequate administration of antibiotics could allow bacteria to mutate so that the medicines no longer work: they become resistant. “Rapid monitoring of antibiotic levels would be a huge advantage in hospital,” says Ates, “it might be possible to fit the method into a conventional face mask.” In another project at the University of Freiburg, Dincer is developing wearable paper sensors for the continuous measurement of biomarkers from exhaled breath. Clinical trials to validate the antibiotic biosensor by testing the system with human samples are planned.

Read more: This App Combines AI and Biosensors to Detect COVID-19 in Two Minutes, Even in Asymptomatic Patients

Bacterial proteins as sensor

The microfluidic biosensor bears proteins that can recognize beta-lactam antibiotics such as penicillin, affixed to a polymer film. The antibiotic of interest in the sample and an enzyme-coupled beta-lactam are in competition to bind these bacterial proteins. This competition generates a current change – like in a battery: the more antibiotic there is present in the sample, the less enzyme product develops, which leads to a lower measurable current. The process is based on a natural receptor protein that resistant bacteria use to detect the antibiotics that threaten them. “You could say we are beating the bacteria at their own game,” Weber says of the process developed by his group.

Sam Draper
September 29, 2021

Innovation of the Month

Do you want to discover more, visit the website
Visit Website

Other news

WellsCare Becomes First Korean Medical Device Company To Launch Product On Best Buy

WellsCare, a member of Born2Global Centre, became the first Korean medical device company to ...

Launch of NIH Project to Use Voice Biomarker for Diagnostics

Owkin and leading research institutions try to establish voice as a biomarker for clinical care.

Smart Health Patches to boost your Running Performance

Smart Health Patches to boost your Running Performance.

Apple Watch’s Future Band Design Could Boost Battery Life

The U.S. Patent and Trademark Office officially granted Apple a patent for a future Apple Watch...
Discover more